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Abstract—Spectral notching, a waveform design method
used in signal processing and radar, mitigates interference
caused by an ever-growing number of technologies which
saturate the radio frequency (RF) spectrum. Online wave-
form design is possible with current technology, but extant
techniques can not meet real-time latency requirements on
the low size weight and power (SWaP) embedded hardware
ideal for contexts where online waveform design is most
useful. Current techniques rely on convex optimization,
leading to non-trivial execution times and excessive com-
pute and power requirements. Artificial Neural Networks
(ANNs) could feasibly be used for spectral notching due to
their ability to approximate complex non-linear functions;
however, ANNs generally require considerable processing
power and result in long inference times. Prior work
has shown that ANNs can accurately perform real-time
radar waveform design, albeit in very specific contexts. In
this paper, we extend that work, demonstrating that lean
neural networks, which model successful convex optimiza-
tion algorithms in a lower dimensional representation, can
meet real-time latency constraints for general waveform
design without sacrificing accuracy on low SWaP embedded
hardware. Our results are exemplified in simulation on
real embedded and general purpose hardware. Overall, our
lean neural network solution decreases inference time on
traditional embedded hardware by 8.5x when compared
to the fastest optimization approach, and uses 10.6x less
energy. Our system executes quickly on low-power embed-
ded devices, using only 16.6% of the energy a conventional
GPU-provisioned system would require.

I. INTRODUCTION

Wireless communication has grown as an important
communication medium in past decades, recently due
to the rise of both mobile computing and the Internet
of Things [1]. As we realize the potential of 5G, with
widespread, high bandwidth wireless networks, an in-
crease in mobile and IoT devices is leading to an increase
in wireless spectrum interference. As the radio frequency
(RF) spectrum saturates with interference caused by (po-
tentially nefarious) RF devices, the need for interference
mitigation becomes increasingly apparent.

Interference mitigation is the process of eschewing
saturated communication channels in favor of clear
channels. Communication across saturated or jammed

channels can lead to partial or total communication loss.
One means of avoiding saturated channels is waveform
notching, where waveforms are deliberately changed
to transmit in a determined non-jammed pass-band in-
stead of the saturated or jammed stop-band. Notched
waveform design has extant optimization solutions, no-
tably the Error Reduction Algorithm (ERA) [2] and
the Re-Iterative Uniform Weight Optimization Algorithm
(RUWO) [3]. These algorithms, however, come with
significant penalties. RUWO is a highly accurate tech-
nique that results in high null depths, the difference in
power between stop and pass bands of the transmitted
waveform, but requires considerably latency. ERA has
both lower latency and higher null-depths than RUWO,
but does not meet the latency constraints required for
online interference avoidance on embedded hardware.

This latency problem is exacerbated by the fact that
many technologies which would benefit from real-time
waveform design, such as small UAV [4], [5] and con-
nected autonomous vehicles [6] have strict size, weight,
and power (SWaP) requirements. For low latency appli-
cations, such as embedded signal processing, waveform
design algorithms [2], [3] rely on online optimization for
latency-sensitive problems like interference avoidance.
As adoption of IoT devices increases, and interference
mitigation technology becomes increasingly necessary
for latency sensitive and low power devices, current
optimization techniques will not meet requirements;
therefore, new techniques must emerge.

A promising direction for new techniques can be
found in prior interference mitigation work using Arti-
ficial Neural Networks [7]–[9]. Prior researchers have
shown that Artificial Neural Networks could be an
alternative technique for solving the interference mitiga-
tion problem. Artificial Neural Networks (ANNs) have
gained popularity as non-linear function approximators.
They use from 10s to millions of creatively arranged
neurons to fit non-linear functions which classify im-
ages [10], detect speech [11], control robots [4], and
more. Neural network development has been simplified



by the adoption of programming models [12], [13] and
datasets [14] that standardize their design and training,
but still require considerable expertise to efficiently
implement. Even with these tools and the rise of highly
parllel hardware, neural networks do not often meet real-
time goals, especially on low SWaP hardware.

A viable approach towards highly accurate yet low-
latency waveform design is possible through the use
of ANNs [7], [8], but prior work uses a naive neural
network to converge to an optimal solution over time.
In our work, we design a lean neural network for
real-time embedded waveform design which is more
general than prior approaches and incorporates problem-
specific information derived from extant algorithms into
the structure of the ANNs. we use AutoWave [9], a
lean neural network architecture for notched waveform
design, to implement a low-power embedded waveform
design system. AutoWave relies on creative architectural
decisions in the neural network design process to min-
imize network size and depth, which decreases latency
and maximizes embedded performance. We demonstrate
that AutoWave decreases inference time on embedded
devices by 8.5x when compared to the fastest convex
optimization approach (ERA) while using 10.6x less
energy. We also show that AutoWave maintains a high
level of precision within the waveform design prob-
lem, reaching a peak accuracy within 1% of the slow
converging but highly accurate RUWO algorithm, and
maintaining a null depth comparable to ERA at far lower
latency.

II. BACKGROUND

Sources of RF interference are rapidly increasing, as
depicted in Fig. 1, due to the growing abundance of
Internet of Things (IoT) devices and consumer tech-
nologies [15]. It is therefore imperative to find ways to
mitigate this interference in order for radar applications
to function at maximum efficiency. We choose to fo-
cus on interference avoidance via spectral notching, a
method where waveforms are modified not to transmit
in the stop-band (frequencies which are saturated with
interference) and instead to transmit in the pass-band
where interference is less present.

A. Spectral Notching Techniques

Spectral notching is primarily performed using two
existing techniques, ERA and RUWO. ERA is a quickly
converging optimization algorithm that is generally used
for phase reconstruction, but can be modified to produce
spectrally notched waveforms [16]. ERA uses an iterative
optimization process equivalent to steepest descent gra-
dient search [2]. The most accurate extant technique used
to perform spectral notching is the Re-Iterative Uniform
Weight Optimization Algorithm (RUWO) [3]. RUWO is

Fig. 1. Example interference environment. IoT devices and consumer
technologies, such as smartphones, transportation vehicles, drones, etc.,
produce RF interference on an unprecedented scale.

a deterministic process that performs frequency nulling
using a covariance matrix and steering vector [3]. While
both process are deterministic and converge quickly in
an optimization context, both RUWO and ERA take a
considerable amount of time to converge compared to
the real-time constraints of online waveform design, even
when using general purpose hardware [7].

For illustration, the latency garnered from both algo-
rithms can be conveniently compared to common neural
network operations. ERA relies on an iterative steepest-
descent gradient optimization approach analogous to
neural network training. RUWO, on the other hand,
is conventionally performed for 50 iterations, each of
which requires a series of matrix operations analogous to
a forward pass through a layer of a neural network. Given
the nature of these optimization mechanisms, it stands to
reason that a single pass through a lean neural network
could considerably outperform both of these operations
in terms of latency and energy consumption.

B. IoT Devices, Interference, and Latency

Expanded use of IoT devices [17] to commercial,
government, and civil use in all aspects of life has
driven their widespread adoption. This proliferation of
WPAN devices, such as Z-Wave and Raspberry Pi [18],
[19], connected autonomous vehicles [6], UAV [4], and
other internet connected devices has increased environ-
mental RF interference. Often, such devices have little
remaining power or compute capacity needed to mitigate
interference [20] if they so chose to. It is imperative,
therefore, that a waveform design solution either uses
the embedded hardware already provisioned on these
systems, or that additional hardware is low-SWaP.

Even if a technique can design waveforms on an
embedded device, it must meet some latency constraint
to be useful. A bare minimum benchmark for success
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or a technique’s latency could be that the waveform
it is designing is created in less time than it will
take to transmit, meaning the design of a one second
transmission should take less than one second create
with a successful technique on an embedded device at
a minimum. Using this formulation, we demonstrate a
neural technique that can successfully design 1024 Hz
LFM chirp signals on embedded hardware.

III. DESIGN

Given the inherent constraints of IoT devices, and the
significant compute power required for modern wave-
form design techniques, we sought to 1) design an ANN
technique that approximates waveform techniques which
use optimization, and 2) assure that it operates in real
time as per our formulation in section 2 on the embedded
platforms that these devices use. In this section, we detail
the design of a neural network that approximates the
quality of RUWO and ERA, and the miniaturization
process that allows it to operate on embedded devices.

A. Key Challenges

To design our efficient neural network for online
waveform design, we took inspiration from existing work
solving this problem with both neural networks [7] and
optimization [3]. An existing neural solution to this
problem, NeuroWav, solved this problem by matching
input waveforms to output waveforms stored in a lookup
table. NeuroWav used a binary mask to simplify the
classification process, resulting in milisecond-level clas-
sifications on general purpose computers. This approach
has considerably shortcomings. First, NeuroWav doesn’t
design waveforms itself. Waveforms are precomputed
and stored in a lookup table, limiting the generalization
and usefulness of the overall system, and constructing
barriers to adoption. Second, NeuroWav performs a
series of signal processing steps before classification
to convert raw complex input waveforms into the time
domain. This process is time consuming and potentially
unnecessary, providing room for optimization.

Conversely, classical solutions like RUWO, as men-
tioned in section 2, far exceed real-time guarantees.
Researchers found that RUWO used for spectral notching
violates real-time constraints by multiple orders of mag-
nitude, takings 100s of milliseconds to 10s of seconds
to converge [7] on general purpose computers. The goal
for our design is, therefore, to use RUWO data to train a
creatively designed neural network which takes as input
raw complex signal data and outputs a complex notched
signal in real-time.

B. Neural Network Design

Our neural network relies on two creative design deci-
sions to approximate RUWO with high accuracy. First,
we designed a custom loss function which prioritizes
desirable waveform features. Second, we separated the
imaginary and real components of the complex input into
two separate vectors which are fed to two different neural
networks which perform inference in parallel.

1) Custom Loss Function: Neural networks depend
on loss functions to evaluate the quality of their pre-
dictions [21]. The ”Loss” generated from a specific
prediction describes the error between that prediction
and its actual value. Our neural network intakes sampled
waveforms represented as vectors of complex number.
Applying a commonly used loss function to this problem,
such as mean-squared error, will eventually result in
outputs that approximate the target RUWO waveforms,
but will evenly evaluate error of all individual complex
samples from the output waveform. While our output
waveforms should closely approximate the RUWO out-
put data, they should also maintain certain characteristics
that training with a mean-squared error loss function
does not inherently reinforce.

For this reason, we created a custom loss functions
which rewards valuable waveform characteristics in the
time and frequency domains that are not easily deter-
mined by the complex representations of our output
waveforms over absolute accuracy between the input
and output complex representations. As shown in Fig. 2,
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Fig. 3. Our split neural network architecture transforms input interference waveforms directly into transmittable notched waveforms, similar to
the traditional neural network architecture, but now does so in 3 parallel stages: (1) Split complex signal into the two corresponding real-valued
signals I and Q (2) Feed real signals through two separate neural networks (3) Combine new real-valued signals into complex signal.

we seek to prioritize 5 key waveform characteristics: A
clear pass-band, a deep notch in the stop-band, clean
roll off, a constant modulus in the time domain, and
matching phase. Our loss function calculates error based
on 4 equations: Mean-squared error between the input
and output waveforms, and the three equations shown
in Fig. 2 which make these time and frequency domain
characteristics more apparent to loss evaluation. The final
error returned by our loss function is the average loss
reported by these four functions.

2) Separate I and Q Models: Our second design
improvement focuses on the structure of the radar in-
terference mitigation problem. The waveforms involved
in this problem are composed of quadrature signals: 2
waveforms that are offset by 90◦ and summed together
for transmission. These quadrature waveforms are rep-
resented as a single complex-valued signal where the
real and imaginary components stem from the 2 signals.
However, because neural networks operate solely on real
values, these complex signals are first converted into
coefficient vectors via a zipper merge. These coefficient
vectors do not capture the quadrature relation between
the 2 waveforms and so information is lost.

Our novel idea is to process the 2 signals separately
to preserve each signals integrity. Using 2 separate
neural networks, we give each network only 1 of the
2 signals and then combine the outputs of each network
to form the solution(see Fig. 3). This approach avoids the
complex data conversion problem and also ensures that
the data and relations within each signal are protected.
Additionally, because the complexity of the input data
is reduced, the size of each neural network can also be
reduced thus lowering latency.

C. Embedded Design

Once our neural network solution operated correctly
on traditional hardware, we began the process of embed-
ding our design into low-power devices. Executing our
neural network solution on the Raspberry Pi platform re-
quired no architectural modifications given the universal
compatibility of TensorFlow machine learning libraries.
However, due to the relatively low computational power
of the platform, we had to ensure that our solution only
used optimized operations which eliminated the usage of
any pre or post-processing to avoid additional latency.

IV. IMPLEMENTATION

In this section, we provide details for the data gen-
eration, algorithm setup, and neural network implemen-
tation toward replication and advancement of our work.
We include the specific hardware used for simulation
as well as any software libraries, and their respective
parameters, used for machine learning.

To train our neural network, we generated training
waveforms using both ERA and RUWO using MATLAB
2021a. We generated 262,144 1 second sample LFM
waveforms with a 1024 Hz sample rate and 512 Hz
transmit bandwidth with a Gaussian noise amplitude of
0.1 and variance of 1. Sample waveforms were created
using the Air Force Research Laboratory’s Mustang
supercomputer.

The AutoWave neural network was build using Keras
with the Tensorflow backend in Python 3.6. Our network
was, like our data generation, trained on the Mustang
super computer using an NVIDIA Tesla P100 GPU. Our
best-performing neural network, after hyperparameter
tuning, had a single hidden layer with a width of 256
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neurons and a tanh activation layer. Our networks were
trained for 100 epochs with 10-fold cross validation.

For our experiments, we used the low-cost Raspberry
Pi 3 Model B which features a quad core 1.2GHz
Broadcom BCM2837 ARMv8 64-bit CPU and 1GB of
LPDDR2 RAM but has a small credit-card sized profile.
This device is used in many embedded systems platforms
for its small profile and energy footprint, programma-
bility, and low cost. For comparison, we executed all
techniques on a general purpose computer. We used a
Dell r720 with dual intel E5-2670 CPUs, 144GB of
RAM, and an NVIDIA GT 1030 GPU.

V. RESULTS

We now show that our neural network solution outper-
forms prior convex optimization attempts at the spectral
notching waveform problem on embedded devices. We
will show that neural networks deployed to low-power
devices can achieve comparable accuracy to state-of-the-
art algorithms with drastic latency and power reductions.

Fig. 4 shows the performance of RUWO, ERA, and
three neural network models in terms of cosine similarity
to RUWO and overall null depth. ERA is 99.9% similar
to RUWO, while our ANNs are between 99.0% and and
97.8% simlar to RUWO. The naive implementation, NN
MSE, and our split IQ and custom loss model achieve the
same accuracy (99%) across our sample set. Accuracy
to RUWO, however, is not entirely indicative of per-
formance. A high null depth in our resultant signals is
imperative to assure that signals operate well in the high
signal to interference and noise ratio (SINR) environ-
ments where interference avoidance is necessary. RUWO
achives an astonishing null depth of 200 dBm, which
far exceeds necessary depth for most radar applications
experienced by IoT devices. ERA achieves a null depth
of 31.9 dBm, and our neural network techniques achieve
null depths respectively of 28.5, 22.3, and 29.8. While

TABLE I
LATENCY OF RUWO, ERA, AND OUR NEURAL NETWORKS WHEN

EXECUTED ON AN EMBEDDED DEVICE AS WELL AS GENERAL
PURPOSE HARDWARE.

Algorithm
Raspberry Pi

Latency
(ms)

CPU / GPU
Latency

(ms)

RUWO 453965.43
± 4131.61

1064.98
± 10.94

ERA 1982.04
± 29.27

185.47
± 3.87

NN MSE 230.98
± 2.74

23.19
± 1.86

NN Custom
Loss Function

233.92
± 3.16

20.72
± 0.44

NN Split 250.90
± 0.63

23.35
± 0.29

our split network model does not outperform ERA, it’s
absolute null depth is 35% greater than our naive MSE
network, demonstrating that clever network design can
maintain accuracy and improve performance.

While maintaining overall performance is paramount,
it is important to determine the latency and power
consumption of each technique on embedded devices
to truly assess their efficacy for low SWaP interference
avoidance. Tab. I shows the average latency of a single
execution of RUWO, ERA, and our neural networks run
on both a Raspberry Pi 3b embedded device and a GPU-
provisioned general purpose computer. RUWO has a
total latency of 453.965 seconds on embedded hardware
and 1.064 seconds on conventional hardware, which are
both untenable for our one second waveform. ERA’s
latency of 185ms on conventional hardware should be
tenable to maintain continuous communication for 1
second waveforms, but it’s embedded performance of
1.982 seconds clearly precludes continuous transmission.

Our neural network approaches all maintain latencies
below the 1-second sample time, with times of 231ms,
234ms, and 251ms respectively on embedded hardware.
These represent a 1965−1809x improvement in latency
over RUWO, and an 8.6−7.9x latency improvement over
ERA on embedded hardware. Interestingly, our embed-
ded neural networks outperform RUWO even when it is
provided a GPU by a factor of 4.6− 4.25x.

Tab. II shows the energy consumption of our tech-
niques when run on both embedded and conventional
devices. RUWO shows increased energy consumption
when run on embedded devices compared to conven-
tional devices due to the decreased compute power and
access to parallelism on our embedded device. ERA
and our neural networks, however, are lighter and less
compute bound than RUWO, meaning overall energy
consumption improves when using embedded devices.
ERA uses a total of 6 joules when run on our embedded
device. Our neural networks, however, use only 0.6-
0.67 joules per classification on our embedded device, a
10.6 − 9.7x decrease in energy consumption compared



TABLE II
ENERGY CONSUMPTION OF RUWO, ERA, AND OUR NEURAL

NETWORKS WHEN EXECUTED ON AN EMBEDDED DEVICE AS WELL
AS GENERAL PURPOSE HARDWARE.

Algorithm
Raspberry Pi

Energy Consumption
(J)

CPU / GPU
Energy Consumption

(J)

RUWO 1510.5304
± 14.8451

261.2894
± 6.5143

ERA 6.4959
± 0.1020

45.5188
± 1.4046

NN MSE 0.6139
± 0.0144

3.6731
± 0.2849

NN Custom
Loss Function

0.6160
± 0.0128

3.6608
± 0.0793

NN Split 0.6691
± 0.0093

4.1077
± 0.0593

to ERA.
Our technique is, while successful within our experi-

mental parameters, is not without limitations. We explore
waveform design within a restrictive context, using only
1024Hz LFM signals. This is useful for many low-
bandwidth IoT and radar contexts, but will not produce
waveforms for higher bandwidth and frequency contexts
within latency goals. Fortunately, there is room for our
technique to grow. The rise of low-power accelerators
like edge TPUs [22], neuromorphic hardware [8], and
FPGAs [23] portend a bright future for low SWaP neural
solutions to IoT problems.

VI. CONCLUSIONS

Online waveform design is becoming an increasingly
necessary on embedded hardware for IoT devices to
communicate clearly with one another. Interference mit-
igation using waveform design is a well-understood
problem, but extant optimization solutions are slow and
prior neural solutions generalize poorly. We present an
ANN solution to waveform design that automatically
designs notched waveforms using a single pass through
a lean neural network. Our method greatly outperforms
prior solutions in terms of latency (at least 7.9x) and
power consumption (at least 9.7x) and meets real-time
standards for waveform design on the low SWaP em-
bedded hardware on which IoT devices rely without
sacrificing accuracy or waveform characteristics.
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