






Algorithm 1 FAPA Simulation

1: yieldmap← empty

2: i← starting image

3: ensembleError←∞

4: while ensembleError > threshold do

5: featVec← extract(i)

6: yieldmap[featVec[lat],featVec[lon]] = featVec[GE]

7: errVector← findNextFlightAction(featVec)

8: dir = min(errVector)

9: i = nextImage(i, dir)

10: imagesMapped← error(dir)

11: return extrapolate(yieldmap)

were captured at 3 points in the growing season, June, August,

and September. The images are all geo-tagged, allowing us to

place them in a virtual map. Using this data set, appropriate

feature extraction, FAAS control algorithms, and ensemble

error models, we fully simulate a FAPA system.

Our simulator takes the series of coarse steps denoted in

Algorithm 1 to replicate FAAS action. The simulator described

takes three arguments: 1) a set of geo-tagged images rep-

resenting a crop field, 2) a starting image in the image set,

and 3) an ensemble model error threshold. The simulator will

use these arguments to output an estimated green excess yield

map. Algorithm 1 starts by initializing an empty yield map,

a starting image (i), and ensemble error. The yield map is

initialized as a 2 dimensional array of zeros. Each cell in the

array represents an image in the image set. The goal of the

FAPA simulation is to fill this map with real and extrapolated

green excess values that can be used to predict yield. Until

ensemble error falls below the user provided threshold, it loops

over the sampling procedure.

The sampling procedure begins by extracting features from

image i. The goal of feature extraction is to retrieve from an

image a vector of floating point values representing specific,

user defined features that are useful for pathfinding, yield es-

timation, and geo-location. Our simulator extracts 15 features,

including GPS location, green excess, leaf area index, and

corn detection. These features are represented in the featVec

variable.

The next step in the sampling procedure is to add the

information learned from feature extraction to our yield map.

To do this, we add the green excess value of i (GE) into

the position in yieldmap corresponding to the latitude and

longitude of i (Lat, Lon) obtained from the feature vector.

Once the yield map has been updated, we must find the next

image to sample. To conserve energy and sample efficiently,

we choose this image based on the images directly adjacent to

i. To find the next image, we must find the next flight action

(i.e a movement north, south, east, or west) then find the image

corresponding to that movement. To find the next flight action,

we use a reinforcement learning approach. Our approach uses

a series of feature vectors from past FAAS executions to

make pathing decisions. For each feature vector, information is

also known about the possible flight actions for that position.

For our simulation, our feature vector data set includes the

green excess of all adjacent images. This information can be

used to calculate utility gain, a quantification of improvement

of our model based on the addition of that feature vector’s

information.

Using reinforcement learning, we can estimate the utility

gain for each flight action using similar prior execution data

without actually sampling each flight action. To find similar

execution data to a feature vector, the simulator runs the

K-Nearest Neighbors [16], [17] algorithm using our feature

vector data set as the reference set and the current feature

vector as the query. This returns the K most similar feature

vectors in the data set to the current feature set. These feature

sets are used to calculate utility gain.

To determine the best direction to choose for sampling,

the simulator uses the green excess of each of the K-Nearest

Neighbors to minimize the error in its unfinished yield map.

Map error is estimated using ensemble models. Ensemble

models are very simple formulae that converge when the map

is complete. In the case of this FAPA simulation, ensemble

models all converge to mean green excess. We use five models

to make up our ensemble: mean, median, 95% confidence

interval min and max, and coarse mean (i.e (min+max)/2).

To determine ensemble error, we find the range between the

ensemble model values. For each flight action, we calculate

the average ensemble error when adding each of the K-nearest

neighbors of the current feature vector to the current yield map.

The flight action which decreases ensemble error the most

is chosen. In Algorithm 1, the findNextFlightAction function

takes the feature vector, finds its K-Nearest Neighbors using

our feature vector data set, calculates ensemble error, and

returns a error vector containing the average ensemble errors

of each flight action. The direction with the smallest error is

chosen.

Once the flight action is chosen, the next image is selected

based on the current image and flight direction, and is assigned

to i. This sampling procedure continues until the user provided

amount of images are sampled. Once sampling concludes,

empty regions of the yield map must be filled in. This is done

using recursive dilation.

The extrapolate function in Algorithm 1 recursively dilates

the unfinished yield map until it is full. The dilation procedure

begins by creating a copy of the current yield map. The proce-

dure iterates over the original map, looking for empty squares

with full indices in their eight-connected neighborhood. Once

an index fitting this description is found, the mean of its full

eight-connected neighbors is added to the copy map. Once

all indices have been checked, the copy map is evaluated. If

all indices of the copy map are full, it is returned. If any

index in the copy map is empty, it is then extrapolated and its

extrapolated version is returned.

IV. EARLY RESULTS

The simulator supplied was sensed data from 7,000 cornfield

images composed into 1350 sample runs. We profiled energy

demands for aircraft and compute offline. For aircraft, we
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