Autonomic Computing Challenges in
Fully Autonomous Precision Agriculture

Jayson Boubin!, John Chumley!, Christopher Stewart!, and Sami Khanal?
Department of Computer Science and Engineering, The Ohio State University!
Department of Food, Agricultural and Biological Engineering, The Ohio State University?

Abstract—Precision agriculture examines crop fields, gathers
data, analyzes crop health and informs field management. This
data driven approach can reduce fertilizer runoff, prevent crop
disease and increase yield. Frequent data collection improves
outcomes, but also increases operating costs. Fully autonomous
aerial systems (FAAS) can capture detailed images of crop fields
without human intervention. They can reduce operating costs
significantly. However, FAAS software must embed agricultural
expertise to decide where to fly, which images to capture and
when to land. This paper explores fully autonomous precision
agriculture where FAAS map crop fields frequently. We have
designed hardware and software architecture. We use unmanned
aerial systems, edge computing components and software driven
by reinforcement learning and ensemble models. In early results,
we have collected data from an Ohio cornfield. We use this
data to simulate a FAAS modeling crop yield. Our results (1)
show that our approach predicts yield well and (2) can quantify
computational demand. Computational costs can be prohibitive.
We discuss how research on adaptive systems can reduce costs
and enable fully autonomous precision agriculture. We also
provide our simulation tools and dataset as part of our open
source FAAS middleware, SoftewarePilot.

I. INTRODUCTION

In 2050, the planet will support 9.7B people. People (and the
livestock they eat) will demand 1.7X more food [1]. However,
rising sea levels and city sprawl will decrease arable land
in growing countries. Atmospheric C'Os will dampen food
production as climate change worsens [2], [3]. Producing
enough food and providing access to it is a grand challenge.

Food demand will require larger crop yields per arable
acre. Today, only 60-80% of planted seeds yield edible
crops [4]. Nitrogen deficiency, hydration, crop diseases, pests
and fungi degrade yield. Precision agriculture uses satellites,
aircraft, soil sensors and digital weather stations to sense field
conditions, monitor crop health, detect problems early and
improve crop yields [5], [6]. For example, Integrated Pest
Management uses images collected from aircraft to detect and
count insects and vermin in a crop field [7]. Armed with this
data, farmers can apply pesticides parsimoniously to reduce
costs and sustain the planet. More generally, we broadly define
vield maps as whole-field characterizations of crop and/or soil
health. One goal of precision agriculture is to produce yield
maps which farmers may use to manage crops.

Crop health changes over time because nitrogen levels
diminish, pests emerge and water needs vary. Yield maps
produced frequently can detect changes promptly. Problems

40%
30%
20%
10%

0%

H total H [abor
M aircraft ™ compute

airplane
(1 map)

Scouting Cost
(vs total cost)

fapa +
autonomic
computing

airplane uav fapa

Fig. 1. Fully autonomous precision agriculture reduces and shifts costs.

detected early afford cost effective solutions. However, fre-
quent mapping is costly and can exceed savings. Figure 1 plots
costs to map a 250-acre corn field frequently (weekly) for 12
weeks. In comparison, current practice creates a field map once
per growing season [8]. Corn fields in Ohio USA profit $148
per acre on average [9]. Figure 1 plots costs relative to profit.
Airplane pilots charge $5-$10 per acre to produce maps [10],
[11]. At $5 per acre, 12 whole-field maps would cost 40% of
profits. Unmanned aerial systems (UAS) use small aircraft and
do not carry pilots onboard. Instead, they are piloted remotely.
Figure 1 assumes UAS pilots charge $20 per hour and cover
12 acres per hour. Frequent mapping using UAS consumes
14% of profits. Despite remote piloting, labor associated with
piloting would account for 12% of profits.

Fully autonomous aerial systems (FAAS) eschew human
piloting. Instead, FAAS software manages flight, captures
images and analyzes data. FAAS software can fly more
safely and efficiently than human pilots. Experts agree that
fully autonomous systems will replace unmanned aerial sys-
tems [12], [13]. However, as shown in Figure 1, the economic
case for precision agriculture is complicated. We model fully
autonomous precision agriculture (FAPA), i.e., FAAS that pro-
duce yield map reports. FAPA reduces labor costs significantly
from $20 per hour to $10 per hour, but the compute resources
needed to execute FAAS software increase total costs. Naive
FAPA accounts for 13% of profits.

Autonomic computing systems adapt their execution at
runtime, speedup compute workloads and use fewer resources.
FAPA systems can use autonomic computing to reduce labor
and compute costs. As shown in Figure 1, if autonomic
computing techniques can reduce costs by 66%, frequent
mapping would be cost competitive with current practices. We
contend that autonomic computing is the missing ingredient in
FAPA systems.

UAVs

SoRce
BX

Fig. 2. Core agricultural FAAS system components.

Base Station

) -
() E.

Edge Server Datacenter

This paper reports design and implementation for an early
FAPA prototype. Our FAPA system uses consumer-grade UAV,
edge and cloud infrastructure. Reinforcement learning and
deep feature extraction are key software components. FAPA
must compare recently sensed data to anticipated outcomes,
because image analysis alone does not fully capture utility for
reinforcement learning. Our prototype uses ensemble models.
Each model correlates to expected yield. Variance among
models captures utility. When our prototype achieves desired
utility, it lands and produces a yield map. Our reinforcement
learning approach intelligently samples the field and produces
a yield map without exhaustively exploring the field in its
entirety.

We evaluated our FAPA system on aerial, cornfield images.
Each image represents a GPS location. The FAPA aircraft
flies between recorded locations. At each location, the aircraft
computes its reinforcement learning workload and improves its
yield map. Our FAPA system produced low-error yield maps.
Error decreased with sample size, but converged when 40% of
the field was sampled. In terms of cost, accelerated computing
systems inflate hardware costs but also execute faster and
reduce hourly labor. Early analysis of the FAPA workload
reveals opportunities for autonomic computing. For example,
self-aware integration between FAPA systems could reduce
sample size. Edge to cloud bursting could reduce hardware
costs.

All software tools used to collect and extract our dataset and
simulate FAPA can be found as part of our open source FAAS
middleware SoftwarePilot, which is hosted on Github [14].

II. DESIGN

In this section, we outline a hardware and software archi-

tecture for FAPA. The hardware design considers agricultural
settings and resource constraints. The software design employs
reinforcement learning to manage flight actions, e.g., fly north,
south, east, west and land.
Hardware Architecture: Figure 2 depicts the main hardware
components. Unmanned aerial systems (UAS), base stations,
edge gateways, and data centers play unique roles. Below, we
describe each.

UAS provide remote sensing. They capture and store images
and tag their geographical position (e.g., using GPS). Modern
UAS cameras support still images and video across a number
of spectra. UAS fly between positions without human pilots,
reducing operating costs. However, their battery life is limited.
Modern UAS can fly 2040 minutes but recharge 60-80
minutes. UAS have onboard processors, and can perform

crop field

environment
B image
s captured
action taken feature extraction
‘ core features ‘ path history ‘ ag. models ‘ util

path planner [| \\ L[]

T

ath histoStau?n?;e(l)sds:It:?ng ain prior
o | "
P Y i observations

Fig. 3. Reinforcement learning underlies our approach.

lightweight processing on-board. Complex processing is of-
floaded to support long battery life and reduce execution delay.

Due to power constraints, maximizing the utility of UAS
flight is important. The number of images required to map an
acre of cropland has a quadratic relationship with the spatial
resolution of the images taken. The spatial resolution of the
images taken must be chosen thoughtfully depending on the
application. Some systems may only need centimeter precision
for tasks like yield monitoring, while more complex pest and
disease detection systems may need sub-millimeter precision
to properly discern features. The average area covered per
UAS mission is dependent on the precision of each image,
and is a primary metric that designers should account for when
considering UAS storage capacity, charge time, classification
needs, total scanning time, total number of UAS, and edge
compute resource provisioning.

Base stations enable communication between UAS, power
edge computing systems and recharge UAS in the field.
The electric grid and/or sustainable off-grid power supplies
base stations. As a result, the base station houses wireless
networks and edge computers. FAPA require long range wire-
less networks capable of communicating with multiple UAS
over many acres. In swarm setups [15], UAS may proxy
communication through base stations. The base station can
also provide docking and charging for UAS. Route planners
can use in-field charging stations to avoid long return flights
to the UAS home base. Configuration of the base station
varies across applications and fields. Specifications of radio
frequency, charging dock, and edge gateway link depend on
farm size, distance from the gateway, compute resource power
constraints, and the number of UAS supported.

Edge servers pull images from UAS, extract pertinent fea-
tures, direct high-level flight paths and produce yield maps.
They are the computational engine for FAPA workloads.
Workload kernels hosted on edge servers include: image anal-
ysis, deep learning, path planning, crop modeling and flight
API management. These computationally intensive kernels
can require powerful processors and accelerators, e.g., GPUs.
Edge servers can have significant energy demands. These
demands can stress base stations powered by sustainable, oft-
grid sources, e.g., power cells or renewable energy. Edge
servers may also draw expensive consumer electricity from
electric grids.

| yield map legend: . high

moderate [low

. image captured

agriculture —p field models,

expert neural nets, RL data

b A B -
A

agriculture ... wait for
models for yield map: expert) more data
mEE (0.87, 1.17)
apply
==. pesticide

—» sampled — yield map —p error bounds

fully autonomous mapping over growing season

Fig. 4. Fully autonomous precision agriculture

Edge servers are constrained by base station power sup-

plies. Large clusters are not permissible, but at times, edge
servers may suffer large compute workloads. For example, a
swarm of UAS executing FAPA may simultaneously capture
images that require heavy processing. Data centers can offload
demands when Internet connections are available. Complex
feature extraction, i.e., the execution of deep neural networks,
SVM and other classifiers, are attractive offloading workloads.
Offloading also helps when many models must be run and
may be used adaptively, e.g., only when load is high enough
to cause service level violations. Cloud offloading requires bi-
directional Internet connection capable of transmitting images
and classification results rapidly.
Software Architecture: As shown in Figure 3, FAPA software
executes feature extraction, state modeling and reinforcement
learning. FAPA software is fully autonomous— humans nei-
ther fly nor direct UAS. The workflow is (1) collect data, (2)
extract features related to FAPA goals, (3) determine if goals
have been met, and (4) create new flight paths such that future
sampled data will fulfill modeling goals.

We use the term features extraction broadly. Any image or
data processing reduction constitutes feature extraction. Ex-
amples include geographic location (data processing), object
detection (image processing), pose estimation (image and data
processing) and simple brightness and contrast computations.
Feature extraction procedures differ greatly in compute needs
and their ability to be reused across applications and fields.

Feature extraction produces a feature vector, i.e., a vec-
tor containing numerical values representing each extracted
feature. The feature vector is used to compute utility, i.e
the usefulness of an image/state toward accomplishing FAPA
goals. Utility calculations are customized for each precision
agriculture objective. Usefulness clearly depends on purpose.
Once a utility value is obtained, the FAPA system uses the
utility value along with historical information to model the
state of its explored area. This may include updating maps of
sensed information, or using high level models to gain meta-
information about the collection of feature vectors the FAPA
system has already collected. This state model can be used to
determine whether the user-provided FAPA system goal has
been accomplished and the UAS must land, or whether more
data must be collected.

Fully Autonomous Precision Agriculture: This sensing,
extracting, modeling, and pathfinding cycle is repeated until

the FAPA system runs out of data, a system component runs
out of power, or the FAPA system goal is met. Many FAPA
systems can be composed using this basic design. In this paper,
we implement a FAPA system to model crop yield in corn
fields.

Figure 4 describes the design of the yield-modeling FAPA
system. The goal of this system is to generate a yield map
of the crop field. Due to the size of crop fields and the lack
of resources available in them, it is wise to sample the field,
taking pictures of only a percentage of the field to predict
yield. Using our FAPA system design, we have created a
system that can sample a crop field based on the goal of yield
modeling and extrapolate sampled ground truth points into a
yield map of the entire field with low error.

To do this, the system must have appropriate feature extrac-
tion models, state models, and historical training data. Green
Excess and Leaf Area Index are strongly correleted with yield.
We use them in our feature extraction procedure and to create
yield maps. The details of these models are orthoganol to this
paper. We refer the reader to [8] for details.

Our FAPA goal targets yield map error. Low error maps
bolster confidence for costly management choices. Hence, high
utility samples— i.e., useful images— reduce yield map error.
However, a problem emerges: how can we compute utility
without knowing true yields in advance?

We estimate error by using an ensemble modeling approach.
We assume whole-field yield error and aggregate variance cov-
erge comparably with sample size. We use multiple models to
obtain better predictive performance, i.e., ensemble modeling.
Once the ensemble models converge beyond a user defined
threshold, we consider our map complete. If the error of the
ensemble models is above the user defined threshold, we fly
to a new location and sample the field again. Using Green
Excess and Leaf Area Index, we can calculate utility gain by
estimating the change in error for our ensemble models for
each possible path the UAS may take. The direction which
decreases ensemble error the most is chosen.

III. IMPLEMENTATION

Using this design, we have implemented a FAPA system
that is capable of generating such yield maps in simulation.
Our simulation environment relies on data sensed from real
UAVs to generate yield maps. Our dataset consists of over
10,000 12 megapixel images captured at 33 feet over a 75 acre
Ohio corn field at a spatial resolution of 4mm?. Our images

Algorithm 1 FAPA Simulation
1: yieldmap < empty
2: 1 4 starting image
3: ensembleError + oo
4: while ensembleError > threshold do

5: featVec < extract(i)

6: yieldmap[featVec[lat],featVec[lon]] = featVec[GE]
7: errVector < findNextFlightAction(featVec)

8: dir = min(errVector)

9: i = nextlmage(i, dir)

10: imagesMapped <« error(dir)

11: return extrapolate(yieldmap)

were captured at 3 points in the growing season, June, August,
and September. The images are all geo-tagged, allowing us to
place them in a virtual map. Using this data set, appropriate
feature extraction, FAAS control algorithms, and ensemble
error models, we fully simulate a FAPA system.

Our simulator takes the series of coarse steps denoted in
Algorithm 1 to replicate FAAS action. The simulator described
takes three arguments: 1) a set of geo-tagged images rep-
resenting a crop field, 2) a starting image in the image set,
and 3) an ensemble model error threshold. The simulator will
use these arguments to output an estimated green excess yield
map. Algorithm 1 starts by initializing an empty yield map,
a starting image (i), and ensemble error. The yield map is
initialized as a 2 dimensional array of zeros. Each cell in the
array represents an image in the image set. The goal of the
FAPA simulation is to fill this map with real and extrapolated
green excess values that can be used to predict yield. Until
ensemble error falls below the user provided threshold, it loops
over the sampling procedure.

The sampling procedure begins by extracting features from
image i. The goal of feature extraction is to retrieve from an
image a vector of floating point values representing specific,
user defined features that are useful for pathfinding, yield es-
timation, and geo-location. Our simulator extracts 15 features,
including GPS location, green excess, leaf area index, and
corn detection. These features are represented in the featVec
variable.

The next step in the sampling procedure is to add the
information learned from feature extraction to our yield map.
To do this, we add the green excess value of i (GE) into
the position in yieldmap corresponding to the latitude and
longitude of i (Lat, Lon) obtained from the feature vector.

Once the yield map has been updated, we must find the next
image to sample. To conserve energy and sample efficiently,
we choose this image based on the images directly adjacent to
i. To find the next image, we must find the next flight action
(i.e a movement north, south, east, or west) then find the image
corresponding to that movement. To find the next flight action,
we use a reinforcement learning approach. Our approach uses
a series of feature vectors from past FAAS executions to
make pathing decisions. For each feature vector, information is
also known about the possible flight actions for that position.

For our simulation, our feature vector data set includes the
green excess of all adjacent images. This information can be
used to calculate utility gain, a quantification of improvement
of our model based on the addition of that feature vector’s
information.

Using reinforcement learning, we can estimate the utility
gain for each flight action using similar prior execution data
without actually sampling each flight action. To find similar
execution data to a feature vector, the simulator runs the
K-Nearest Neighbors [16], [17] algorithm using our feature
vector data set as the reference set and the current feature
vector as the query. This returns the K most similar feature
vectors in the data set to the current feature set. These feature
sets are used to calculate utility gain.

To determine the best direction to choose for sampling,
the simulator uses the green excess of each of the K-Nearest
Neighbors to minimize the error in its unfinished yield map.
Map error is estimated using ensemble models. Ensemble
models are very simple formulae that converge when the map
is complete. In the case of this FAPA simulation, ensemble
models all converge to mean green excess. We use five models
to make up our ensemble: mean, median, 95% confidence
interval min and max, and coarse mean (i.e (min+mazx)/2).
To determine ensemble error, we find the range between the
ensemble model values. For each flight action, we calculate
the average ensemble error when adding each of the K-nearest
neighbors of the current feature vector to the current yield map.
The flight action which decreases ensemble error the most
is chosen. In Algorithm 1, the findNextFlightAction function
takes the feature vector, finds its K-Nearest Neighbors using
our feature vector data set, calculates ensemble error, and
returns a error vector containing the average ensemble errors
of each flight action. The direction with the smallest error is
chosen.

Once the flight action is chosen, the next image is selected
based on the current image and flight direction, and is assigned
to i. This sampling procedure continues until the user provided
amount of images are sampled. Once sampling concludes,
empty regions of the yield map must be filled in. This is done
using recursive dilation.

The extrapolate function in Algorithm 1 recursively dilates
the unfinished yield map until it is full. The dilation procedure
begins by creating a copy of the current yield map. The proce-
dure iterates over the original map, looking for empty squares
with full indices in their eight-connected neighborhood. Once
an index fitting this description is found, the mean of its full
eight-connected neighbors is added to the copy map. Once
all indices have been checked, the copy map is evaluated. If
all indices of the copy map are full, it is returned. If any
index in the copy map is empty, it is then extrapolated and its
extrapolated version is returned.

IV. EARLY RESULTS

The simulator supplied was sensed data from 7,000 cornfield
images composed into 1350 sample runs. We profiled energy
demands for aircraft and compute offline. For aircraft, we

14 3.5 1 . 3000 — .
e] UN 9 e Aircraft m Computem Laborm Aircraft
50.8 =t Aug S 37| ==e= Edge 2500
£ Sep] _ Compute -
i c25 7]
o Q 2000 —

0.6 H g 2 4 (é
> >15 g 15007
2 044 g £.1000 -
g g 1 n
S:) 0.2 - 0.5 - 500

0 0 0 o, 0, 0, 07 | A B |

25% 10% 20% 30% 40% 10% 20% 30% 40% 10% | 300 | " a0%

Percentag? l\slapped Percentage Mapped Percentagze I;/Iapped
a b c

Fig. 5. Early results: (a) Yield error decreases as sample size increases, (b) FAPA aircraft and compute have comparable energy demands and (c) low cost
FAPA requires balancing compute and labor costs. Sampling percentages are relative to a 75 acre field.

repeatedly tested flight commands in each direction in isolation
and use average energy demand. For FAPA software, we
measured delay and power on a Lenovo Thinkpad T470 with
Intel i7 7500u CPU and NVIDIA 1080 GPU. We did not use
cloud offload for these tests. Figure 5 shows early results
pertaining to yield error, energy demand, and cost.

Figure 5 (a) describes the sum of squared error (SSE)
between our extrapolated yield maps and ground truth yield
maps. We normalized to SSE of a 2.5% sampling size.
Figure 5 (a) shows extrapolated yield map error decreases
as sampling area increases. The selected sampling points
reflect knee-points in our ensemble of models. Variance in the
ensemble converges with SSE. This property generalizes our
reinforcement learning approach, because utility models can
transfer across fields and applications, compute local ensemble
variance and identify sample sizes that yield good accuracy.
For example, consider accuracy reported across monthly data
sets. We are able to reuse ensemble models while still finding
good sample sizes. The correlation is imperfect. August data
converges more quickly September and June. Future work
will explore the factors affecting convergence and look for
techniques to further align local model calculations with
global objectives. In addition, we observed that our pathfinding
algorithm (nearest neighbors) performed poorly. At times,
the FAPA system took clearly wrong turns. We believe that
redundancy elimination in selected features, i.e., PCA, could
improve pathfinding. Algorithms like A* search will help also.

Figure 5 (b) depicts estimated energy consumption. The
aircraft is a DJI spark with a stock battery. Aircraft discharge
slightly outpaces edge discharge. FAPA composed with bat-
tery powered edge servers must include substantial off-grid
batteries to avoid frequent recharge. For our 75 acre field, an
aircraft can map about 10% of the field before recharge.

While the edge system can be easily provisioned with
greater battery capacity, aircraft must land to be recharged, or
have their batteries swapped. Highly provisioning edge system
batteries may be an important step towards realizing FAPA.
A highly provisioned edge system should be able to control
multiple UAS, increasing energy demands linearly. For large
fields, links from the edge to the cloud may be required to
offload computation to meet objectives for all aircraft.

Figure 5 (c) shows the cost of implementing FAPA systems.
System A is an accelerated FAPA system, equipped with one
UAV and an edge device equipped with an accelerator (GPU,
FPGA, etc). System B is a basic FAPA system, equipped with
an edge system with only a simple CPU. System [is an ideal
FAPA system, including autonomic software components that
allow the system to operate labor free.

The cost of each system is broken down between aircraft,
compute, and labor. Each system requires the same aircraft
and basic compute hardware. Systems A requires accelerators
that decrease the runtime of our FAPA algorithms and increase
system throughput. Systems A and B also both require labor.
Without autonomic software components, workers would be
required to set up, execute, and take down the FAPA system.
System I eschews this cost by implementing autonomic poli-
cies in software. Workers being paid $10 an hour would cost
hundreds of dollars over the course of the season performing
tasks that can be performed by autonomic software alone.
Labor costs increase as sample rate and field size increase. The
addition of autonomic software components to intelligently
manage aircraft charging, scheduling, and dispatching, as well
as data movement and reporting could considerably cut the
cost of FAPA system implementation, especially for large
farms.

V. DISCUSSION

Table I outlines autonomic software techniques that could
greatly reduce FAPA costs. There are opportunities across the
software stack. In this section, we highlight a few opportunities
to motivate future work.

Self-aware system integration seeks autonomous component
reuse, integrating components without human programmer
intervention. FAPA could use self-aware integration to expand
their feature vector. Features computed by FAPA on nearby
fields could influence where FAPA systems fly and when they
land. Integrating more features can reduce sample size required
for low yield error which reduces labor costs. The challenge
is to produce a scalable infrastructure for feature sharing in
resource constrained agriculture settings.

Quality-adaptive models [18]-[20] allow multi modal fea-
ture extraction. One mode uses computationally intensive but

Topic

Systems Layer

Adaptive Computing Challenges

Self-Aware Integration

Autonomic Management

Seamlessly integrate features extracted by other devices on nearby fields

Quality-Adaptive Models

Autonomic Management

Speedup feature extraction when accuracy does not degrade outcome

Load Balancing Middleware In swarms, dynamically re-partition fields to avoid long recharging delays
Adaptive Power Management OS/Architecture Duty cycle power hungry devices while keeping execution time low

Edge to Cloud Bursting OS/Architecture Use cloud resources to multiplex thin edge clients across multiple fields
Micro-UAV Swarms Cyber physical Reuse smaller, cheaper aircraft over multiple mapping missions and fields
Performance Modeling Pervasive Model end-to-end execution time of mapping missions

TABLE I

Autonomic computing opportunities in FAPA.

accurate models. Other modes use less intensive models when
inaccurate features do not affect FAPA outcomes. Quality-
adaptive models seek to switch between models to conserve
battery life on edge and aircraft. The ability to choose lower
quality models in situations that allow for them should speed
up FAPA compute time, decreasing labor costs or allowing for
an increase in sampling percentage and relative battery life.

Self integration and quality-aware models necessitate a
new system layer between middleware and application. We
propose the Autonomic Management Layer, a new system
layer between application and middleware responsible for the
management of autonomic software components. To maximize
the utility of a FAPA system, an ensemble of autonomic
components must be added to decrease labor expenses and
increase sampling and mapping accuracy. These components
are too high level for the middleware, which handles data
movement, aircraft flight, and classification. Conversely, they
are too low level for the application layer, which handles
user interaction and reporting. The new layer is required to
interpret user provided data like field maps, utility functions,
and classifiers, into middleware actions that implement high
level autonomic policies.

Adaptive power management duty cycles power hungry
devices including: unused aircraft, GPUs and accelerators and
compute processors. This technique prolongs aircraft and edge
battery life and avoids long recharging delays. To be sure,
aircraft consume energy hovering idly. Computation delays
affect energy usage on edge servers and aircraft. Smart power
management prolongs both aircraft and edge batteries (or
reduces edge energy costs). For example, by autonomically
decreasing the number of active aircraft in a swarm or the
number of accelerators operating [21], [22], classification
and pathing latencies will change and impact system life.
When combined with quality-adaptive models, adaptive power
management may be able to save power at zero cost to
system performance. In addition, lessons from sustainable
computing where multiple energy sources power compute (and
now devices) are pertinent [23]-[26].

Edge to cloud bursting also requires interaction between
the autonomic layer and OS/Architecture layer. The FAPA
model described in this paper uses relatively simple models to
cover a relatively small area with one aircraft. If the number
of aircraft, size of the farm, or model complexity increase
within reason, it is plausible that normal edge systems will
not be able to process all of the images they receive quickly
enough for aircraft. Aircraft will have to hover, wasting power,
waiting for instructions from edge systems. The autonomic and
OS/Architecture layers can work together to instead move data
to the cloud when aircraft hover times are too high.

VI. CONCLUSION

Precision agriculture is increasing crop yields across the
globe in an effort to feed our growing population. Using FAAS
in precision agriculture applications can considerably reduce
labor costs and increase field mapping frequency. In this paper,
we present a design of a FAPA system along with a simulated
implementation. We examine trade-offs concerning accuracy,
power, and cost of the total system using profile information
from real FAAS missions. We demonstrate that our FAPA
system can produce low-error yield maps by sampling 40%
or less of the total crop field, decreasing the energy and
labor costs of a FAPA implementation. We also identify
autonomic computing mechanisms that can help decrease labor

and hardware costs of FAPA systems further.
: Acknowledgments: This work was funded in part by
NSF Grants 1749501 and 1350941 with support from NSF
CENTRA collaborations (grant 1550126).

REFERENCES

[1] H.C.]J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence,
J. FE. Muir, J. Pretty, S. Robinson, S. M. Thomas, and C. Toulmin, “Food
security: The challenge of feeding 9 billion people,” Science, 2010.

[2] C. Rosenzweig and M. L. Parry, “Potential impact of climate change on
world food supply,” Nature, vol. 367, 1994.

[3] X. Zhang and X. Cai, “Climate change impacts on global agricultural
land availability,” Environmental Research Letters, vol. 6, 2011.

[4] S. Savary, A. Ficke, J.-N. Aubertot, and C. Hollier, “Crop losses due
to disease and their implications for global food production losses and
food security,” Food Security, vol. 4.2, 2012.

[5]
[6]

[7]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Zhang and J. M. Korvacs, “The application of small unmanned aerial
systems to precision agriculture,” Precision Agriculture, vol. 13.6, 2012.
A. ur Rehman, A. Z. Abbasi, N. Islam, and Z. A. Shaikh, “A review
of wireless sensors and networks’ application in agriculture,” Computer
Standards and Interfaces, vol. 36.2, 2014.

L. E Ehler, “Integrated pest management (ipm): Definition, historical de-
velopment and implementation, and the other ipm,” in Pest management
science, 09 2006.

S. Khanal, J. Fulton, N. Douridas, A. Klopfenstein, and S. Shearer,
“Integrating aerial images for in-season nitrogen management in a corn
field,” Computers and Electronics in Agriculture, 2018.

L. Foreman, “Characteristics and Production Costs of U.S. Corn Farms,
Including Organic, 2010,” 2014.

S. Garvey, “Considering trying out a uav?.” http://www.grainnews.ca,
2015.

C. Paterson, “A perspective from above.” http://www.agadvance.com/
issues/jan-2013/a-perspective-from-above.aspx, 2013.

K. P. Valavanis and G. J. Vachtsevanos, “Future of unmanned aviation,”
in Handbook of unmanned aerial vehicles, 2015.

L. Martin, “The future of autonomy isn’t human-less. it’s
human more.” https://www.lockheedmartin.com/en-us/capabilities/
autonomous-unmanned-systems.html, 2018.

J. Boubin, C. Stewart, S. Zhang, N. T. Babu, and Z. Zhang, “Softwarepi-
lot.” http://github.com/boubinjg/softwarepilot, 2019.

M. Rosalie, M. R. Brust, G. Danoy, S. Chaumette, and P. Bouvry,
“Coverage optimization with connectivity preservation for uav swarms
applying chaotic dynamics,” in ICAC, 2017.

C. D. Yu, J. Huang, W. Austin, B. Xiao, and G. Biros, “Performance
optimization for the k-nearest neighbors kernel on x86 architectures,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC *15, (New York, NY,
USA), pp. 7:1-7:12, ACM, 2015.

J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” CoRR, vol. abs/1702.08734, 2017.

J. Kelley, C. Stewart, N. Morris, D. Tiwari, Y. He, and S. Elnikety,
“Measuring and managing answer quality for online data-intensive
services,” in ICAC, 2015.

L. larson, W. Tarneberg, C. Klein, and E. Elmroth, “Quality-elasticity:
Improved resource utilization, throughput and response times via ad-
justing output quality to current operating conditions,” in /EEE ICAC,
2019.

J. Kelley, C. Stewart, N. Morris, D. Tiwari, Y. He, and S. Elnikety,
“Obtaining and managing answer quality for online data-intensive ser-
vices,” in ACM Transactions on Modeling and Performance Evaluation
of Computing Systems, 2017.

N. Morris, S. M. Renganathan, C. Stewart, R. Birke, and L. Chen,
“Sprint ability: How well does your software exploit bursts in processing
capacity?,” in ICAC, 2016.

C. Wang, B. Urgaonkar, A. Gupta, L. Y. Chen, R. Birke, and G. Kesidis,
“Effective capacity modulation as an explicit control knob for public
cloud profitability,” in /CAC, 2016.

H. Makrani, H. Sayadi, D. Motwani, and ..., “Energy-aware and machine
learning-based resource provisioning of in-memory analytics on cloud,”
in Symposium on Cloud Computing, 2018.

C. Stewart and K. Shen, “Some joules are more precious than others:
Managing renewable energy in the datacenter,” in ACM Workshop on
Power Aware Computing and Systems, 2009.

Z. Xu, N. Deng, C. Stewart, and X. Wang, “Cadre: Carbon-aware data
replication for geo-diverse services,” in ICAC, 2015.

C. Li, R. Wang, T. Li, D. Qian, and J. Yuan, “Managing green
datacenters powered by hybrid renewable energy systems,” in ICAC,
2014.

