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Abstract. Resource-limited embedded devices like Unmanned Aerial
Vehicles (UAVs) often rely on offloading or simplified algorithms. Fea-
ture extraction such as Principle Component Analysis (PCA) can reduce
transmission data without compromising accuracy, or even be used for
applications like facial detection. This involves solving eigenvectors and
values which is impractical on conventional embedded MCUs.

We present a novel hardware architecture for embedded FPGAs that
performs eigendecomposition using previously unused techniques like
squared Givens rotations. That leads to a 3x performance improvement
for 16× 16 covariance matrices over similar approaches that use much
larger FPGAs. Offering higher than 30 fps at only 68.61µJ per frame,
our architecture creates exciting new possibilities for intelligent mobile
devices.
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1 Introduction

Eigendecomposition and feature extraction have been the focus of continued
research for many years [19,25,26]. Algorithms like principle component anal-
ysis (PCA) allow us to simplify a dataset to only its important features by
identifying its distinguishing eigenvectors. By projecting data into a reduced
eigenspace (the space described by the eigenvectors), we can simplify problems
like facial detection and recognition to a comparison of a few eigenvalues, i.e.
the relative weight of each eigenvector. More applications of these techniques
are being developed, e.g. in the field of convolutional neural networks (CNNs)
where PCA can find dominant features and compress network structures [12].

However, PCA’s batched nature and computational complexity makes it
infeasible for resource-limited devices. In power-limited applications such as
Unmanned Aerial Vehicles (UAVs) that rely on camera feeds, feature extraction
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could offer data size reduction through local preprocessing. Adding the online
learning capabilities of incremental PCA (IPCA) further allows the devices to
incorporate incoming images into the training set – thereby continuously improv-
ing its performance.

To enable this, an accelerator architecture is required that efficiently per-
forms eigendecomposition on an embedded FPGA. This offers improved energy
efficiency for small devices over GPUs, and additionally provides flexibility over
ASICs as it can be reconfigured to deploy another accelerator at runtime. Dele-
gating this complex computational task to a local FPGA promises considerably
improved processing power over doing everything on a MCU.

However, most techniques for doing eigendecomposition such as the QR algo-
rithm [11] strongly depend on trigonometric functions or square roots to com-
pute a Givens rotation matrix [14] which are resource inefficient on such devices.
Although alternatives like Squared Givens Rotations (SGR) [9] would be con-
siderably more efficient, they introduce scaling issues and have to the authors’
knowledge not been successfully used in the QR algorithm.

In this paper we present a revolutionary hardware architecture design for
performing eigenvalue decomposition (EVD) on an embedded FPGA. By using
a number of state-of-the-art optimization techniques in a novel way, our system
is capable of increasing processing speed by 3–4x over current literature without
compromising accuracy.

Our main contributions are

1. a highly resource-optimized computing architecture for solving eigenvalue
problems,

2. that is scalable from tiny embedded FPGAs to standard desktop models
through a fully homogeneous network of processing elements,

3. and offers pipelined single clock processing elements for maximum processing
speed.

We present our solution by looking at related work in Sect. 2, followed by
an overview of our solution in Sect. 3. The details of the technical contributions
follows in Sect. 4, after which we evaluate our solution in Sect. 5. Finally, we study
the application case of UAVs in Sect. 6 and conclude with some final thoughts
in Sect. 7.

2 Related Work

Incremental PCA [1,6] is a relatively recent development. It offers us the crucial
benefit of online training and avoids the expansion of the covariance matrix
as the training dataset is expanded. Conventional eigensolver algorithms have
been found to be ill-suited to GPU architectures [18] even though they can
achieve nearly 5x speedup over CPUs. QR decomposition (which computes a
single iteration of the QR algorithm) specifically has been implemented using
different GPU-based accelerator architectures [17,18].

Similar to our approach, Guerrero-Ramı́rez et. al. [15] presented the first
eigensolver based on systolic arrays that implements the QR algorithm using
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FPGAs. These arrays describe a network of processing elements, where each
partially computes a function and passes to their neighbors. In this case, they
iteratively calculate trigonometric functions. Their implementation improved
processing time by a factor of 1.17x–1.37x compared to CPU architectures.

A slower solution that includes a full PCA solver was shown by Korat [19].
It uses significantly more FPGA resources than the previously mentioned work,
and showed that some of the components such as mean calculation and data
normalization are very inefficient on FPGAs.

Ultimately, these authors were limited by having to iteratively approxi-
mate trigonometric functions using the COordinate Rotation DIgital Computer
(CORDIC) algorithm [21] – causing severe slowdown for more processed bits [23].
Additionally, their resource consumption is impractically high for an embed-
ded FPGA. Other projects that use systolic arrays for QR decompositions on
FPGAs [8,27] have similar limitations. To the best of the authors’ knowledge
our work represents the first FPGA implementation of the QR algorithm using
systolic arrays based on an algorithm that does not rely on trigonometric func-
tions.

3 Solution Design

At the core of our EVD (see Fig. 1) is the triangular systolic array (a) to per-
form QR decomposition. It is composed of two types of nodes: boundary (b)
on the diagonal of the triangular matrix and internal (c) off the diagonal. This
iteratively computes the eigenvalues and eigenvectors of a provided covariance
matrix, entering in a skewed order (d). The QR-array results can be fed back
into the system using the buffer (e) until the result converges, at which point
the deskewed output (f) is presented. The scaled output of each step of the QR
array is down-scaled (g).

Fig. 1. Parallel triangular systolic array processor to determine the eigenvalues and
eigenvectors by calculating the QR decomposition based on SGR in an iterative manner.
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The starting point for our solution is the QR decomposition. We first con-
sider a real symmetric matrix A0 of dimensions n × n, which is the covariance
matrix for the PCA to be applied. The rank of this matrix corresponds with
the number of eigenvectors being computed, effectively controlling the number
of features being extracted. The approximate determination of the eigenvalues
and eigenvectors is done with the QR algorithm. It is an iterative application of
the QR decomposition, which factorizes a matrix by means of plane rotations,
e.g. Givens rotations.

Each QR iteration is given as:

[Qi, Ri] = qrd(Ai) (1)
Ai+1 = RiQi (2)

and is performed n times over the matrix A until its diagonal elements con-
verge to the eigenvalues. The collection of eigenvectors Q themselves could be
determined by calculating the product of all these orthogonal matrices Qi:

Q =
n∏

i=0

Qi (3)

Using SGR allows us to first use Ai to compute Ri, and even to solve Eq. 1
by processing the identity matrix I to compute Qi. The orthogonal similarity
transformation Ai+1 follows by processing Ri. Furthermore, the eigenvectors Q
in Eq. 3 can be determined efficiently by processing each computed Qi. As all of
these are processed in the same way, we can reuse the processing elements for
improved efficiency.

Each iteration in the QR algorithm thus consists of the input sequence S =
{A,Q,R}. The problem remains that all Ri and Qi are scaled by the SGR,
meaning it cannot be directly used for further iterations.

4 Technical Implementation Contributions

Our primary contribution addresses the internal structure of the processing ele-
ments in the QR array. We improve upon the latency of current state-of-the-art
algorithms by using the square-root-free algorithm proposed by Döhler [9] to
avoid the associated latency. It allows our processing elements to have a latency
of only one clock cycle.

Although SGR has been used for QR decomposition, it has not been applied
to the QR algorithm due to scaling problems. Since results should be fed through
multiple iterations, this would cause overflow errors. To the authors’ best knowl-
edge SGR has therefore not been used for EVD using the QR algorithm.

4.1 SGR Result Scaling

The SGR algorithm scales each calculated QR decomposition [9], which means
that it cannot be used for the QR algorithm directly. Especially when using
fixed-point representation, this will quickly cause overflow.
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We found the result to be as shown in Eq. 4, which shows that the eigenvalues
λi found on the diagonal of R∗ are squared. Additionally, other values are linearly
scaled with the value of λ2

i . Similarly, each column in Q∗ is scaled.

A R* Q*⎡

⎢⎢⎢⎣

a11 · · · a1n

a21 · · · a2n

...
. . .

...
an1 · · · ann

⎤

⎥⎥⎥⎦
SGR−−−→
QR

⎡

⎢⎢⎢⎣

λ2
1 λ1r12 · · · λ1r1n

0 λ2
2 · · · λ2r2n

...
...

. . .
...

0 0 · · · λ2
n

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

λ1q11 · · · λnq1n
λ1q21 · · · λnq2n

...
. . .

...
λ1qn1 · · · λnqnn

⎤

⎥⎥⎥⎦
(4)

A well-known approach for determining reciprocal square roots [10] is given
by iteratively solving the Newton Method

yi+1 =
1
2
(3yi − y3

i xin) y0 = 0.5 (5)

until it converges to y = 1√
xin

. However, this can be slow under a bad initial
guess y0 very different from the actual result. An interesting approach to this
was coined for the video game Doom1, where the initial guess is varied depending
on the input value.

Extending on this concept, we have developed a novel way to use lookup-
tables (LUTs) for using this with fixed-point numbers. By choosing from a pre-
computed set of appropriate y0 based on the input xin, we can reduce the number
of iterations required for convergence. Given a sufficiently large LUT with 128
24-bit entries to create a very accurate initial guess, we can directly solve Eq. 5
in a single iteration.

4.2 Shared Division

Solving EVD using SGR requires two divisions [7,9,20], which for a matrix width
of n would result in 1

2 (n2−n) dividers. Since they are non-trivial to implement in
hardware (particularly the reciprocal of the divisor), this would be very resource-
intensive.

Therefore, we studied the schedule of active nodes in the array as shown in
Fig. 2. As division is only required in diagonal mode, this shows that only one
division occurs per row. This allows us to share the dividers more efficiently, and
to reduce the required number to n. For a 16× 16 covariance matrix, this leads
to a reduction of 104 divider circuits.

4.3 HDL Optimizations

Similarly, large binary multipliers occupy substantial logic resources in FPGAs.
One can build a sequential circuit using multiplexers on the inputs that cycles
a single multiplier for multiple usages. The basic idea is to first get the result of
A * B in a register, then to multiply that by C.
1 https://github.com/id-Software/DOOM.

https://github.com/id-Software/DOOM
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Fig. 2. Propagation through the array at time ti highlighting the active nodes

Additionally, the DSPs are optimized using a technique called retiming, which
involves moving registers across combinatorial logic to improve the design perfor-
mance without affecting the input or output behavior of the circuit [22]. Despite
the optimized interconnection in dedicated logic, adder chains used to implement
binary multipliers in DPS slices cause delays.

Based on anecdotal evidence, this technique improved our maximum fre-
quency possible from 247.64 MHz to 373.13 MHz. This increase of 50.67% greatly
boosts performance, as the worst case slack is greatly improved.

5 Evaluation

Before our approach can be applied to a practical system, we must first evaluate
how well it performs. It is aimed at embedded FPGAs that have been shown to
be very capable in applications such as small neural networks [5,24]. Not only
must we ensure that our design is efficient enough to fit this resource-constrained
class of FPGAs, but also that the resulting performance is adequate to offer real-
world usability.

5.1 Resource Utilization

Firstly, we consider the resource consumption on the FPGA. As detailed in
Sect. 4, the greatest impact on this is through the size of the processed matrix.
Larger matrix sizes enable the computation of more eigenvectors at increased
complexity, thereby extracting more identifiable features. Therefore, we varied
this size in Table 1 and captured the number of resources consumed by each
solution.

Note that these results are an absolute number and is valid for the entire
7 series devices from Xilinx, as they are all based on the same architecture.
This provides a convenient way to choose the correct FPGA to use for a specific
application, based on the limiting hardware resource. For example, the Spartan
7 range varies in available DSP slices from 10 on the S6 to 160 on the S100. It
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Table 1. Synthesis results for Xilinx-7 series FPGAs in absolute numbers

Matrix width Logic cells Flip-flops DSP slices

4 × 4 3,940 1,497 15

8 × 8 11,616 5,548 45

16 × 16 36,165 21,612 153

also shows that the implemented homogeneous architecture is easily adaptable to
larger-scale deployment, as a larger FPGA could simply support a larger matrix
and thereby enable larger inputs and more complex applications.

To put these numbers in context, we compare them to the most recently
published CORDIC-based eigensolvers [15,19] in Fig. 3. We consider specifically
the logic cells and DSP slices, as these are commonly the limiting factors.

Fig. 3. Comparison of the resource utilization of different matrix sizes with related
work

Omitting the additional logic required by a CORDIC-based approach signif-
icantly improves our resource consumption, as almost half of the logic cells are
saved. More importantly, the number of DSP blocks are reduced by almost 85%.
This allows us to use FPGAs with significantly fewer resources, or to support a
larger covariance matrix.

5.2 Throughput

Before the system’s throughput rate can be calculated, the maximum operating
frequency fmax must be determined using a static time analysis. Table 2 lists the
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maximum possible clock rates for all targets as the matrix size is varied. As the
other solution is not open source, only the clock frequencies achievable in [15]
are provided for comparison. Unsurprisingly, the maximum clock rate at which
the implemented design can be operated decreases with increasing logic density.

Table 2. Maximum operating frequencies in [MHz] depending on the matrix width

Target fmax matrix width

4 × 4 8 × 8 16 × 16

XC7S100 239.01 228.31 219.11

XC7A100 265.75 237.87 237.98

XC7K70 339.90 272.18 252.46

EP4SGX230 [15] 235.32 220.15 201.35

To determine the throughput rate, the combined latency of the processing
elements must be considered. Each has a latency of p = 6 clock cycles. The
number of iterations to be performed is set to k = 30 for a direct comparison
with related work.

Firstly, the latency of initially filling the FIFO buffers is LFIFO = 3n − 1
cycles, where n is again the matrix width. Each of the QR iterations requires
LQR = 24n − 6 while the inverse square root consumes a constant LSqrt = 12
clock cycles.

This leads to a model of the overall latency L and throughput T of

L(n, k) = LFIFO + k · (LQR + LSqrt) (6)

T (n, k) =
fmax

L(n, k)
=

fmax

24nk + 3n + 6k − 1
solutions/s (7)

where each solution refers to a complete calculation of all eigenvalues and -
vectors [15]. The maximum operating frequency fmax results from the static
timing analysis results shown in Table 2.

Figure 4 compares the throughput of our approach to a CORDIC-based app-
roach [15] and a desktop CPU. The SGR-QR was implemented on a Xilinx
Spartan-7 XC7S100, and a fixed point representation of 24 bits was chosen to
match the input signals in each DSP48 block. Note that the frequency of the
memory is assumed to be at least as fast as the main clock fmax.

The SGR-QR is faster than the CORDIC-based approach implemented on
the considerably larger Virtex-7 (3.81x for 4 × 4 to 4.26x for 16 × 16 matrices).
The benefits of our highly parallel architecture over higher clocked CPUs become
particularly evident for larger matrices. This is due to our approach’s linear
runtime, while CPU implementations are commonly O(N3) and single-threaded.
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Fig. 4. Time in µs required to compute a single eigenpair of different matrix sizes

5.3 Estimated Power Usage

Using the maximum clock frequency from Table 2, the implementation results for
a number of embedded FPGAs from the Xilinx-7 Family are shown in Table 3.

Table 3. Implementation results for matrix size 16 × 16

Target LUT FF DSP Power [W]

Spartan-7 XC7S100 49% 17% 96% 1.402

Artix-7 XC7A100 49% 17% 64% 1.379

Artix-7 XC7A200 23% 8% 21% 1.238

Kintex-7 XC7K70 76% 26% 64% 1.425

Kintex-7 XC7K160 31% 11% 26% 1.214

Apart from the proportional resource consumption for a number of devices,
the estimated power usage is also provided by the Vivado software of Xilinx.
This is the active consumption of the device, highlighting the importance of
processing speed to offset the cost of keeping the FPGA powered.

6 Application Case Study

Our system is designed with high energy and resource efficiency in mind in
order to support the small, battery-powered devices used in many pervasive
or organic computing applications. One example is a fully autonomous aerial
system (FAAS) that combines unmanned aerial vehicles (UAV), edge comput-
ers, and data centers to create intelligent systems. They should autonomously
explore their environment and accomplish high level goals without human inter-
vention [3], which requires expensive techniques such as facial detection.
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UAVs typically only carry small batteries with flight times between 15 and
25 min and therefore rely on offloading tasks to edge and cloud systems [4]. Trans-
ferring images between edge and UAV is costly, taking on the order of seconds
in prior work [4]. Prior work on micro aerial vehicles with in-situ vision sys-
tems performed detections locally on UAV. Increased frame rates and decreased
power-consumption were achieved by downsampling (5–12 fps) and compressing
incredibly small images (17 fps) to be used as input to neural networks [2,13]. In
aerial applications this can lead to loss of critical information contained in small
regions. Instead, our system can be used as a local facial detection algorithm or
as preprocessing to reduce offloaded data to only the important features.

Therefore, we evaluated our architecture design using the well-known FDDB
dataset [16]. A sliding window of 250 × 250 pixels is moved over an input image
of resolution 640×480. The covariance matrix varies with the number of training
images from 4 to 16 faces. For this dataset, 95% of the variance could be described
with 62.5% of vectors – offering substantial data reductions. Processing speed
of an EVD on the Spartan 7 S100 for different size covariance matrices are
presented in Fig. 5. Using a naive classifier, increasing the matrix size from 4×4
to 16 × 16 increased the accuracy from 44.6% to 55.5% (in line with similar
approaches [16]).

4 6 8 10 12 14 16
0

40

80

120

160

Matrix width

F
P
S

Fig. 5. Frames per second for facial detection application

The speed is reduced for larger matrices, but even at 16×16 the performance
remains above 30fps. This shows the trade-off between speed and complexity,
which can be combined with Table 3 to tailor the hardware choice. Each device’s
power usage allows us to estimate the energy usage per frame to between 3.14µJ
for n = 4 and 68.61µJ for n = 16. Although related work does not provide
this information, we are confident that our system is more energy efficient, as
transmitting even an image preview (720 × 900) can take a UAV 1.4 s [4].

7 Conclusion and Future Work

We presented our approach for EVD on an embedded FPGA. Through optimiza-
tions like systolic arrays and dynamically scaling SGR results, we achieved an
improvement of 3x performance over other approaches. Additionally, the archi-
tecture is resource optimized enough to be used even on small embedded FPGAs
like a Xilinx Spartan 7.



42 A. Burger et al.

In future work, we hope to implement this onto a set of drones augmented
with FPGAs for real-world experiments. We also plan to investigate using this
feature extraction method as a preprocessor for CNNs. By using the reconfigura-
bility of the FPGA, we can switch between EVD to perform a learning feature
extraction on incoming data followed by a neural network. This provides pro-
cessing complexity heretofore impractical on embedded devices used in organic
computing applications.
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Ministry of Education and Research of Germany in the KI-Sprung LUTNet project
(project number 16ES1125).

References

1. Artac, M., Jogan, M., Leonardis, A.: Incremental PCA for on-line visual learning
and recognition. In: Object Recognition Supported by User Interaction for Ser-
vice Robots, vol. 3, pp. 781–784. IEEE (2002). https://doi.org/10.1109/icpr.2002.
1048133

2. Boroujerdian, B., Genc, H., Krishnan, S., Cui, W., Faust, A., Reddi, V.:
MAVBench: micro aerial vehicle benchmarking. In: 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 894–907. IEEE (2018).
https://doi.org/10.1109/MICRO.2018.00077

3. Boubin, J., Chumley, J., Stewart, C., Khanal, S.: Autonomic computing challenges
in fully autonomous precision agriculture. In: IEEE International Conference on
Autonomic Computing (ICAC), pp. 11–17 (2019). https://doi.org/10.1109/ICAC.
2019.00012

4. Boubin, J.G., Babu, N.T., Stewart, C., Chumley, J., Zhang, S.: Managing
edge resources for fully autonomous aerial systems. In: Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, pp. 74–87. ACM (2019). https://
doi.org/10.1145/3318216.3363306

5. Burger, A., Qian, C., Schiele, G., Helms, D.: An embedded CNN implementation
for on-device ECG analysis. In: IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops) (2020)

6. Cardot, H., Degras, D.: Online principal component analysis in high dimension:
which algorithm to choose? arXiv preprint arXiv:1511.03688 (2015)

7. Cerato, B., Masera, G., Viterbo, E.: Enabling VLSI processing blocks for MIMO-
OFDM communications. VLSI Design 2, 11 (2008). https://doi.org/10.1155/2008/
351962

8. Chen, D., Sima, M.: Fixed-point CORDIC-based QR decomposition by Givens
rotations on FPGA. In: International Conference on Reconfigurable Computing
and FPGAs, pp. 327–332. IEEE (2011). https://doi.org/10.1109/ReConFig.2011.
38
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